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The writhing on the wall: first tentative steps toward a
comprehensive theory of liquid crystal surfaces

T. J. SLUCKIN*

School of Mathematics, University of Southampton, Southampton, SO17 1BJ, UK

A Commentary on the paper ‘‘Theory of the nematic-isotropic transition in a restricted
geometry’’, by A. Poniewierski and T.J. Sluckin. First published in Liquid Crystals, 2, 281-311
(1987).

It is often the case that the most important contribu-

tions made by a researcher in a field are when they are

still relatively new in that field. Best, it is said, for the

researcher’s mind to be still untrammelled by knowledge

overflow and have the advantage of fresh experience

from other fields. This paper is one such. Both

Poniewierski and myself were still young (in our mid-

30s). Poniewierski had only relatively recently finished

his Polish Ph.D., and I had switched fields from

quantum fluids to liquid crystals.

The paper was written in the context of a research

programme involving liquid crystal interfaces. The

background to the programme is as follows. I finished

my Ph.D. in quantum fluids at the University of

Nottingham in 1975, and promptly set off for the

United States, where I continued to work on liquid

helium. At that time people were beginning to use ideas

borrowed from classical fluids, in particular integral

equation methods, to study structure in quantum fluids.

The result was that I had to follow up the origins of

these ideas and found myself becoming more interested

in theories of classical fluids. By the mid 1970s it began

to be possible to say, for the first time, that there existed

viable theories of liquids, on a par with those of solids

and gases. In 1978 I returned to the UK, having

managed to arrange a postdoctoral position for myself

working with Bob Evans in Bristol. At that time Evans,

who is now a distinguished elder statesman in British

statistical mechanics and was elected a Fellow of the

Royal Society in 2005, was only 31 and had yet to

obtain a permanent position.

One area of interest in Bristol at that time was the

structure of liquid surfaces. The Bristol people were

borrowing furiously the density-functional theory from

electron physics and applying it to classical systems. The

idea was essentially to provide a microscopic input to a

Ginzburg-Landau theory. Once one had studied uni-

form systems, the next obvious target was non-uniform

systems. Surfaces (both free surfaces, and those

provided by solid walls) provided ready-made examples,

with both microscopic (e.g. surface thickness) and
macroscopic quantities (e.g. surface tension or contact

angle) to calculate and compare with experiment [1].

One particular focus at that time was the so-called

wetting problem [2]. In this problem one was interested

in determining how a film of liquid grew at a surface as

the external pressure of the gas was increased towards

the saturation vapour pressure. Sometimes the film

grew continuously (complete wetting), sometimes to a
finite thickness (partial wetting) and sometimes not at

all (non-wetting). The basic feature governing this

phenomenon was the competition between forces on

molecules in the vapour from a surface and intermole-

cular forces.

My Bristol project concerned structure factors in

various kinds of classical fluids. It did not go well,

partly because I was unable to replicate the computa-
tional results of a previous postdoctoral worker [3]. A

less tolerant postdoctoral supervisor would have

become impatient and turned to a (no doubt overeager!)

Human Resources Department for advice on how to

ease out the inadequate and underskilled research

assistant. Evans merely suggested another problem.

He later completed the original project work more or

less on his own in his spare time, and still generously
included me on the resulting papers [4]. What is even

more generous is that despite including me on his work

on the structure factors, he excluded himself from

authorship of the work which followed his suggestion.

The paper in question concerned molecular orienta-

tion at the free surface of molecular fluids, say nitrogen

or oxygen [5]. This orientation could be expressed in

terms of an orientational order parameter, which we*Email: T.J.Sluckin@soton.ac.uk
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now often call the Saupe ordering tensor, or simply the

Q-tensor. I knew about these things because the Bristol

School of Physics, having a powerful scientific pedigree,

possessed a first class library, inside the building, with a

ready supply of new books. I guess it must have been

some time in early 1979 that I was attracted by two

brightly coloured, large-sized, hard-backed new arrivals

that were to govern my life for the next quarter century.

The first was yellow and was entitled The Physics of

Liquid Crystals [6] and was by Pierre-Gilles de Gennes,

whose work in magnetism I was already familiar with.

The second was light green, was wrapped in cellophane,

and was an edited compendium of tutorial papers by

two chemists with whose names I was not at all familiar

– G.R. Luckhurst of the University of Southampton

and G.W. Gray of the University of Hull [7].

It was originally the smell and feel of these two books

that impelled me to open them. From them I learnt

about the basics of liquid crystal physics. I also learned

that the apparently slightly doddery but nevertheless

overwhelmingly forceful Charles Frank, who had an

office just across the corridor to mine, was actually Sir

Charles, and that he had written the fundamental paper

in liquid crystals. Thus was born the idea to look for

localised liquid crystal behaviour at the surface of

apparently well-behaved and otherwise isotropic mole-

cular fluids.

It was then with some excitement that when I came

for interview in Southampton (albeit in the Department

of Mathematics) in June 1981 I realised that sitting not

so far away was a research group with interests that

might overlap my own. And so I informed the interview

panel who gingerly asked me whether there might be

any other possible collaborators in Southampton. They

must have been slightly encouraged (perhaps not by

that remark), because they appointed me.

Unfortunately it took several months after my arrival

as a lecturer in Mathematics in Southampton in

October 1981 before I was able to make contact with

the famous Professor Luckhurst. After what seemed

then to be an epoch, but in hindsight must have been

little more than a year, we began to think how to

collaborate.

The immediate impetus for collaboration turned out

to be a visit – I think it was some time in spring 1982 –

by Professor Jan Stecki, Head of the Physical Chemistry

division of the Polish Academy of Sciences in Warsaw.

Nowadays Warsaw is but a short plane hop from

London and one can return the same day. But in 1982

the Iron Curtain still draped fiercely across central

Europe. A visitor from Poland was a matter of some

importance. Luckhurst invited me to lunch with the

visitor. It turned out that the Polish group was one of

very few who had been using modern theoretical

methods of liquid physics (and specifically the direct

correlation function) in a liquid crystal context [8], so

Stecki and I had an immediate common bond. And

Stecki too had an agenda. He had a recent Ph.D.

student with experience in just such methods, whom he

was seeking to place in a sympathetic postdoctoral

environment. This student was Andrzej Poniewierski.

Thus was born the idea of a joint project between

myself and Geoffrey Luckhurst. A proposal, entitled

‘‘Theoretical investigation of surface structure involving

liquid crystals’’ was submitted to the (United Kingdom)

Science Research Council (SRC) in the summer of 1982.

It requested the then magnificent sum of £49,825, for a

project to begin on 1st January, 1983. The money was

required partly to employ a postdoctoral worker

(Poniewierski) and partly to support a research student

who would work on computer simulation of liquid

crystal surfaces. The Luckhurst group, we may recall,

were pioneers in simulating liquid crystals [9], and by

1982 had already published a numbered series of papers

on this subject. In truth, there was a good deal of what

we might now call leverage in this project. I leveraged

Luckhurst’s prestige in the field. And he leveraged my

junior status, for first projects from new lecturers

received privileged status in the reviewing process.

Given the collaboration, we felt assured of success.

But the response from SRC was equivocal. Our

models used molecular cylindrical symmetry as a

starting point. A referee (probably the late Tom Faber

from Cambridge, who generously gave of his time on

numerous occasions to allow me to explore liquid

crystal ideas) complained that, really, cylindrical sym-

metry was insufficient to explain liquid crystal beha-

viour. Luckhurst drafted an eloquent reply. I was too

timid to argue. After some delay, (as always) too late for

the original January starting date, a positive response to

our proposal dribbled in. I employ the term ‘‘dribble’’

advisedly, because out of the magnificent £49,825

originally requested, only a sad £18,450 was forth-

coming. This was only just enough for a post-doc and

then only for two, and not, three years, with no

graduate student.

Inadequate resource for a well-drafted project always

causes problems. Luckhurst and I battled for control of

the project. Eventually, after a well-placed call to the

Funding Council, I was able to establish that the funds

that had been granted were for the theoretical and not

the computational part of the project. Poniewierski was

unwilling to come if his work programme included

simulation (with the benefit of hindsight, he was wrong;

we all ought to have made sure we could simulate when

we were still young!). Luckhurst made a generous
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sacrifice, and in early October 1983 Poniewierski

arrived in Southampton. Although he was primarily

working with me, we arranged for his office to be in the

Assembly Hall home to the Luckhurst group just

outside the Chemistry Department. Thus my regular

visits to Chemistry – visits which have continued over

the ensuing quarter century – began.

The original aim of the project had been to repeat for

liquid crystals the vigorous programme of the previous

decade which had elucidated the connection between

wetting, surface interactions and intermolecular inter-

actions in liquids and mixtures. In fact it seems that

much of this work merely replicated work of the

Derjaguin school in the Soviet Union much earlier.

One related aspect concerned the effect of finite

geometries on the liquid-vapour phase diagram, an

effect known as capillary condensation because usually

the liquid onset occurred at higher temperatures and

lower pressures than in small pores. The simplest case

here involves two rather than a single, surface [9].

Clearly the liquid crystal analogy would involve

replacing liquid densities by the liquid crystal orienta-

tional order parameter, P̄2. Generalised further, one

would obviously need to use the full tensor order para-

meter Qij, but that seemed complicated and to begin

with we resolved essentially to translate known results.

However, events can divert even the best-laid plans. It

is the nightmare of all academics to have their work

scooped. So when I chanced upon Ping Sheng’s 1982

Physical Review paper entitled ‘‘Boundary-layer phase-

transition in nematic liquid crystals’’ [10], I felt a

peculiar mixture of elation and horror. This was my

problem and Sheng had solved it! Worse still, it seemed

that there had been a 1976 Physical Review Letter

heralding this result (of which I was ignorant), and that

Sheng had merely been overtardy in preparing a

complete version. But 1976 predated the excitement in

the wetting and surface physics community. Perhaps

there was something that could still be done.

And so it turned out. We started slowly, like Sheng,

with a single order parameter (so nothing specifically

liquid crystal about it all, really), and replicated Sheng’s

results, but using the Maier-Saupe rather than the

Landau-de Gennes theory to describe the bulk liquid

crystal. With the benefit of hindsight it was but a

practice problem. A follow-up piece of work allowed

the surface to discourage rather than encourage surface

order, a calculation not carried out by Sheng [11]. Now

the surface layer of order material above TNI was

thinner, and sometimes there was no layer at all.

Sheng’s ‘‘boundary layer’’ had predicted that for a small

range of intermediate surface order parameters there

would be a transition of the surface order parameter at

a temperature above the bulk phase transition. We were

able to identify this transition with the so-called pre-

wetting transition and thus not peculiar to liquid crystals

at all. Likewise Sheng had also found that the phase

transition in a thin film was shifted (always upward

according to Sheng). We were able to see that this shift

could be down in temperature as well, and that

moreover the shift could be identified with the (19th

century) phenomenon of capillary condensation.

These results were presented at the 1984 York

International Liquid Crystal Conference, my first out-

ing at an international liquid crystal meeting. No-one

seemed interested in our results, except for a polite

young Japanese scientist who had the neighbouring

poster. His name for Hiroshi Yokoyama and he had

done some experiments on contact angles, a subject

which, in principle, was accessible to us [12]. His papers

had three names on them, and I asked him where his

collaborators were. His rather un-Japanese answer was

that these were not his collaborators, indeed they had

not really contributed (I hope I recollect properly,

because both he and they may well read this article!),

but they were his boss and his boss’s boss. It remains a

mystery why the name of his boss3 was omitted.

Some time in the spring of 1984 an invitation

appeared in the post from Clive Croxton in Australia

to contribute to his book on interfacial phenomena. He

must have learned of our work by samizdat, for we had

not yet published in this field. So in summer 1984 (a

long hot summer, I recall) we wrote a review article

summarizing our work so far entitled Orientational

wetting and related phenomena in liquid crystals [13]. I

cannot be sure, but I think this is the first time the now

standard term orientational wetting was used. In this

article we also began to formulate a phenomenological

theory of anchoring, clearly of crucial interest to liquid

crystal engineers. Despite appearing in a somewhat

obscure edited book, the review article has attracted 234

citations over the years, even though it was superseded

by an excellent review written in 1991 by Blandine

Jérôme [14].

As we became more familiar with our subject we were

able to play with the ideas and not merely transliterate

from one field to another. A paper in Molecular Physics

examined the structure of defects (which we regarded as

an elaborate form of surface) [15]. A more interesting

paper examined the possibility of orientational wetting

by a planar-anchoring, rather than homeotropic

anchoring surface. This paper, which was really the

first in which we (or anyone else!) considered anything

other than a scalar problem, was published in Physical

Review Letters in the summer of 1985 and has attracted

73 citations [16].
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The paper in Liquid Crystals under discussion here, in

which we generalised our work from one to two

surfaces, was the final piece of work carried out by

Poniewierski during his two years in Southampton. The

research itself was carried out partly in Southampton,

partly in Grenoble during my sabbatical period, April-

September 1985 and partly in Warsaw after

Poniewierski’s return to Poland in September, 1985.

This explains why the manuscript was not submitted

until September, 1986, and not published until May,

1987.

We were able to place Sheng’s work in a thermo-

dynamic context, understand which features in the

theory led to an increase or decrease in the phase

transition temperature in a pore, carry out asymptotic

analyses of the solutions of the equations, and also

make a connection between the theory and the well-

known colloid science concept of disjoining force. The

big disappointment, at least from my point of view, was

that we were unable to develop computer programs to

solve for a tensor order parameter. Nowadays, under

the guise of Q-tensor theory, such analysis is standard,

but at that stage it required more skill in numerical

analysis than we possessed. Had we done so, we might

also have investigated the disjoining torque so char-

acteristic of liquid crystals in finite geometries.

A final piece of work in the context of this

programme concerned computer simulation. Geoffrey

Luckhurst’s student Habtamu Zewdie simulated a

lattice model of a liquid crystal [17]. The surface is a

not really free, but one can calculate the ‘‘surface

tension’’, and investigate its temperature dependence,

and ask about the wetting properties of the surface. This

paper was published, as no. 15 in Luckhurst’s series on

computer simulation of liquid crystals, in Molecular

Physics in November, 1986.

After Poniewierski’s return to Poland. I wrote some

follow-up proposals, boasting of the great success of

our previous proposal. But somehow the news had been

muted in the post, for the proposals were unsuccessful;

all that I received were doleful epistles from the Funding

Council about how their funding had (yet again) been

cut (implicitly, by the unsympathetic Thatcher govern-

ment!).

We now look forward from 1987 and examine the

impact of the paper on the field. One early citation in

August, 1988, was particularly gratifying for theorists

who always doubt whether their musings have any

application to the real world. In this paper [18] in the

Faraday Transactions of the Journal of the Chemical

Society, Hiroshi Yokoyama quantitatively interpreted

order parameter experiments on a liquid crystal

sandwiched between a surface and a lens in terms of

what he called the ‘‘SPS theory’’ (i.e. a superposition of

Sheng and Poniewierski-Sluckin).

The general topic of liquid crystals in finite systems

has attracted considerable interest. This is partly

because of the importance of liquid crystal displays,

which have since that time been transformed from a

niche to a mainstream market position. But there is also

fundamental interest as well. The tensor nature of the

liquid crystal order parameter changes the simple

thermodynamic picture which we implicitly assumed

in our paper and which governs all other isotropic

phases. This topic has been investigated by Telo da

Gama and coworkers [19], by Allender and coworkers

[20], and Velasco and coworkers [21]. In addition, it is

now clear that our model omitted important fluctuation

effects, as discussed by Ajdari et al. [22], and in

particular by Žumer and coworkers in Slovenia. The

principal contribution of the Slovenia group has been to

introduce the idea of the fluctuation-induced Casimir

force into the disjoining pressure between two walls of a

vessel filled with a nematic medium [23]. A contribution

by Rey [24] in 2000 employed the full panoply of

continuum mechanics in order to deepen understanding

of the disjoining pressure in nematic systems.

Since the late 1990s there has been much interest in

colloidal systems in a nematic matrix (the so-called

filled liquid crystals). A good understanding of the finite

geometry system is a necessary first step to understand

the effective interparticle potential in the colloidal

suspension. This topic has been studied by Stark and

coworkers [25]. A physically related system occurs when

the liquid crystal is confined inside a system of pores

such as, for instance, an aerogel, and in this case too,

the starting point for understanding the phase beha-

viour of the liquid-crystal-in-many-pores system is the

simple liquid crystal in a slab system which we had

discussed. A calculation along these lines has been made

by Kralj and Popa-Nita [26]

The question of the microscopic calculation of

anchoring forces at surfaces is relevant on both a

fundamental and an applied level. The concept of

anchoring (i.e. orientational forces on a nematic due to

a surface) underlies most practical work on liquid

crystal surfaces, and was always bubbling under our

work in 1987. A calculation by Fournier and Galatola

[27] finally enabled what might be termed microscopic

(i.e. molecular forces) and mesoscopic (roughness and

patterning) forces to be separated.

The 1987 Liquid Crystals paper has (as of late

September, 2006) attracted 103 citations. This figure

does not, of course, bestow block-buster status, but is a

very respectable quantity nevertheless. A considerable

fraction of these citations simply mark an indication
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of continuing interest in a field in which we were

fortunate enough to make early contributions. Our

paper, although of course by now somewhat dated, has

nevertheless attracted three citations in 2006, and 45 of

its citations came after its 10th birthday. The current

open questions tend to concern smectic rather than

nematic liquid crystals, but the general area of liquid
crystals in finite geometries continues to be active.

I am grateful to Andrzej Poniewierski for some recent

correspondence which reminds me of the time that he so

fruitfully spent in Southampton two decades ago. I

thank also many coworkers with whom I have discussed

liquid crystals in finite geometries. There are too many

to mention individually; to pick some out at the expense

of others would be invidious. Finally Geoffrey
Luckhurst has been the most loyal and at the same

time the most challenging of colleagues over the years. I

am particularly grateful to him for reprinting our 1987

paper and allowing me the opportunity to share these

thoughts and reminiscences with the readers of Liquid

Crystals.
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Theory of the nematic–isotropic transition in a restricted geometry

A. PONIEWIERSKI{ and T. J. SLUCKIN*{

{Institute of Physical Chemistry, Polish Academy of Sciences, 01–224 Warsaw, Poland

{Faculty of Mathematical Studies, University of Southampton, Southampton SO9 5NH, England

(Received 25 September 1986; accepted 9 January 1987 )

We discuss, using a Landau–de Gennes formalism, the nematic–isotropic transition
temperature for a system placed between two parallel plates, subject to identical homeotropic
or homogeneous boundary conditions at each plate. The temperature at the phase transition
may increase or decrease as the inverse sample thickness, D21, increases, depending on the
nature of the boundary conditions. In all cases the transition terminates at a critical point for
sufficiently large D21, beyond which the nematic and isotropic phases are no longer distinct.
The phase transition temperature is well described by a liquid crystal analogy of the Kelvin
equation which can be generalized to give an exact Clausius–Clapeyron relation. Under many
circumstances the system behaves from a thermodynamic point of view as though it were in a
bulk ordering field. The finite geometry restricts the growth of nematic or isotropic wetting
films. We discuss the disjoining pressure experiment of Horn, Israelachvili and Perez [15].
Finally we place our work in the context of recent progress in the statistical mechanics of
surfaces and systems in restricted geometries.

1. Introduction

The singularities in thermodynamic quantities which are

associated with phase transitions in physical and

chemical systems only occur in the so-called thermo-

dynamic limit, that is, in the limit of infinitely large

systems. If system size is restricted in any way, either as a

result of the presence of surfaces, or because the system

only has finite extent in one or more directions, these

singularities are profoundly affected. Their position in

the phase diagram may change, new singularities may

occur, and the singularities themselves may cease to be.

Particular cases of such systems are semi-infinite systems,

with one wall, and systems which are infinite in two

dimensions but of finite extent in a third; these systems

have two walls. Such systems are sufficiently infinite that

thermodynamic singularities do occur and sufficiently

finite that qualitatively new phenomena also occur.

We have ourselves recently made a theoretical study

of nematic liquid crystals in a semi-infinite system [1, 2],

and in this paper we extend our study to deal with the

two-wall problem. In the liquid crystal context the

pioneer of such investigations was Sheng [3]. He studied

a semi-infinite sample of nematic liquid crystal in

contact with a wall which exerts an ordering potential

on the nematic. Under some circumstances a separate

first-order phase transition occurs at the wall, at a

temperature slightly above the bulk nematic–isotropic

phase transition TNI, and at which orientational

ordering occurs close to the wall. In fact, as observed

by ourselves [1, 2] and others [4] this so-called boundary

layer phase transition is none other than the prewetting
transition, a rather general phenomenon occurring

when two critical phases are influenced by a third

non-critical phase [5]. Sheng also studied a finite size

nematic sample between two parallel ordering walls.

The phase transition between the disordered isotropic

phase and the ordered nematic phase is shifted slightly

to higher temperatures. The coexistence curve has its

own critical point for some critical value of the
thickness. In addition, features of the semi-infinite

system phase diagram are preserved. The boundary

layer phase transition can occur, although it is rather

insensitive to sample thickness D.

There has also been recent experimental work.

Kuzma and Labes [6] studied the thermodynamics of

a liquid crystal in a cylindrical pore and found, that the

transition temperature dropped slightly as the pore size
was reduced. Yokoyama et al. [7] used the birefringence

method to study thin nematic films bounded by solid

substrates, and their results are consistent to some

extent with Sheng’s picture. They observed a shift in the

transition temperature and there is evidence that the

transition becomes continuous at a critical point when

the nematic film is still as thick as a few thousand

Ångstroms. However, in contradiction with Sheng’s
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study the transition temperature shifted either upward

or downward, depending both on the type of nematic

and on the type of substrate.

In this paper we study the consequences of the

Landau–de Gennes theory of the nematic confined

between two walls. We extend somewhat the model of

Sheng in order to discuss disordering as well as ordering

walls. In the Landau form the theory is in fact

applicable to any first-order phase transition in a

restricted geometry, in particular magnetic systems

and the liquid–gas transition. Such problems have been

studied for many years and there has recently been a

resurgence of interest associated with the progress made

in understanding wetting and spreading phenomena.

Kelvin, in the last century, used a thermodynamic

argument to derive the shift in the saturated vapour

pressure of a vapour in a pore [8]. We shall make the

analogous thermodynamic argument, but also be

interested in the limits to such arguments. More recently

Nakanishi and Fisher [9] were interested in the effect of

plate geometry on the liquid–vapour critical point.

Their arguments demonstrate that a critical point is

expected for a sufficiently thin sample for a system

undergoing a first-order phase transition. Lipowsky and

Gompper [10] and Sornette [11] have looked at a

Landau model between purely disordering plates, and

have in particular concentrated on the asymptotic

regime of large sample thicknesses. In our work we

present calculations over the whole range of D, and for

the more generic case of walls which have both ordering

and disordering terms. We also discuss the asymptotic

regime, which is extremely useful in checking approx-

imate formulae for critical parameters. In addition a

number of authors have recently studied the phenom-

enon of capillary condensation [12], which is essentially

the same phenomenon as that which we discuss.

A related phenomenon which can be examined

theoretically using the Landau–de Gennes formalism

is that of the so-called structural force between two

solid walls, the region between which is filled with fluid.

This force, sometimes also known as the disjoining force

or pressure, exists because each wall independently

affects the fluid structure close to it; the presence of the

other wall changes this effect slightly, and hence

changing the separation affects the free energy.

Interest in this phenomenon goes back many years

[13]. More recently, Perez et al. [14] have made a

thermodynamical study of a liquid crystal system placed

between two walls, emphasizing the structural force,

and Horn et al. [15] have carried out an experimental

study of such a system.

The paper is arranged as follows, In § 2 we set the

scene by deriving various thermodynamic relations

which are useful in the development of the theory.

In § 3 we describe the model. In § 4 we explain in
principle how the model is solved, and describe how

some crucial quantities which crop up in the solution of

the model are related to the thermodynamics. In § 5,

which is of more theoretical interest, we examine

asymptotic properties of the model in the large slab

thickness limit. In § 6 we give the results of the

calculation of the nematic–isotropic phase diagram as

a function of temperature and slab thickness. We also
compare the predictions of the theory for the critical

parameters with a simpler heuristic theory, and thus

relate this finite size transition to the nematic–isotropic

transition in an ordering field. We also make some

comments about the relation of the theory to experi-

mental work. In § 7 we concentrate on the predictions of

the theory for the structural forces between the two

walls. Finally in § 8 we make some concluding remarks.
Although the model is very simple, the calculations are

rather long-winded and most of the technical detail of

the calculations has been relegated to the two

Appendices.

2. Thermodynamics

In this section we discuss various elementary thermo-

dynamical considerations which it will be useful to

bear in mind during our discussions of the microscopic
model studied in subsequent sections. Although

in principle the microscopic model can allow for

the presence of a finite magnetic field which has

an ordering effect on a nematogen, we shall confine

our discussion in this section to the zero magnetic

field case.

We first discuss the shift in transition temperature in
a system of thickness D. The grand thermodynamic

potential V is a suitable free energy for this system (the

chemical potential m is supposed fixed). Per unit area, in

the simplest approximation, this is given by

V

A
~{pDz2c, ð1Þ

where c is the surface free energy p is the bulk pressure

and A is the area. We denote the surface free energies

of the nematic and isotropic phases by cN, cI,

respectively, and the Young–Laplace surface tension

formula yields

cI~cNzcNI cos h, ð2Þ

where h is the contact angle at a nematic–isotropic–wall

line of contact, and cNI is the surface tension at the

nematic–isotropic interface. We denote the pressures in

the isotropic and nematic phases at temperature T by

pI(T) and pN(T), respectively. The bulk coexistence
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temperature TNI is defined by

pI TNIð Þ~pN TNIð Þ: ð3Þ

In the finite thickness sample the phase transition

occurs at TNI(D)5TNI+DTNI(D). At this temperature

VN5VI, or

{pN TNI Dð Þð Þz 2cN

D
~{pI TNI Dð Þð Þz 2cI

D
: ð4Þ

The shift is small, so

pN TNI Dð Þð Þ~pN TNIð Þz LpN

LT
TNIð ÞDTNI Dð Þ,

~pN TNIð ÞzSN TNIð ÞDTNI Dð Þ,
ð5Þ

where SN is the entropy per unit volume of the nematic

phase at TNI, and a similar equation obtains for pI.

Substituting equation (5) into equation (4), we obtain

{SNDTNIz
2cN

D
~{SIDTNIz

2cI

D
, ð6Þ

or

DTNI~
2 cI{cNð ÞTNI

LD
, ð7Þ

where

L~TNI SI{SNð Þ

is the latent heat per unit volume at the bulk nematic–

isotropic transition. Variations of this equation date

back to Kelvin [8] and we call this the Kelvin

approximation [16]. A trivial consequence of equa-

tion (7), using equation (2), is that

DTNI~
2cNI cos hTNI

LD
, ð8Þ

and thus if cos h.0 then TNI is increased, whereas if

cos h,0 then TNI is decreased, as might be expected

intuitively.

However, the formulae (7) and (8) are only approx-

imate. They ignore the interaction between the walls.

Equation (1) must be supplemented in order to take this

into account. We then obtain

V

A
~{pDz2czJ Dð Þ, ð9Þ

where all wall interaction effects are taken account of by

the interaction potential J(D), which must be calculated

microscopically. However,

{
1

A

LV
LD

� �
T ,m

~p{
LJ
LD

~pzpD ð10Þ

defines the disjoining pressure or disjoining force [13], pD.

The quantity pD is the force required, per unit area, to

keep two walls a distance D away from each other when

the whole system is immersed in an infinite bath of the

same fluid as is between the walls. The infinite bath

provides the pressure p, but the extra pressure pD must

be supplied mechanically.
The thermodynamical potential appropriate at con-

stant disjoining pressure is Y, where

Y

A
~

1

A
V{D

LV
LD

� �
~2czDpDzJ,

~2~c Dð Þ:
ð11Þ

This obeys the equation

L~c

LD

� �
pD

~0: ð12Þ

Then ~c Dð Þ is the surface tension per wall on the two-

wall system, and in some sense is the finite D analogue

of c.

A more exact analogue of equation (7) can now be

calculated. This equation will be the Clausius–

Clapeyron equation for the nematic-isotropic coexis-

tence curve with changing D. If TNI(D) and

TNI+dTNI(D+dD) are neighbouring points on the

coexistence curve, we have, following the usual

Clausius–Clapeyron-type arguments,

DV~VN{VI~0 ð13Þ

and

1

A

LDV
LD

dDz
1

A

LDV
LT

dTNI~0: ð14Þ

Following the argument of equation (6) and (7),

1

A

LDV
LT

~D
~
L Dð Þ

TNI Dð Þ , ð15Þ

where
~
L Dð Þ is the latent heat per unit volume in the

finite system. Also from equation (11), and using

equation (13),

1

A

LDV
LD

~
2

D
~cI{

~cNð Þ: ð16Þ

Combining the results in equations (14)–(16) we obtain

DTNI

DD
~

dTNI Dð Þ
dD coexistence curve

,

~
2

D2

~cN{~cIð Þ
~
L Dð Þ

TNI Dð Þ,
ð17Þ

as the equation of the coexistence curve. This is the

natural generalization of the Kelvin equation (7) but is
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now in its exact differential form. We make use of this

equation to calculate coexistence curves in our model

calculations. Taking the limit D5?, ~c~c,
~
L~L

reproduces equation (7). The formula applies so long

as a true phase transition does occur.

Finally, in this section. we discuss the phenomenon of

capillary condensation. If there were merely one wall, the

potential at the wall might favour either phase. When the

contact angle h50 the nematic phase is favoured, when

h5p the isotropic phase is favoured, and intermediate

values of h apply to intermediate situations. As has been

much discussed recently [4], h50 and h5p are special

situations in that complete wetting occurs. We discuss,

for definiteness, the h50 case. The nematic phase is then

so favoured that as the thermodynamic conditions for

nematic–isotropic coexistence are approached a layer of

nematic phase forms at the wall, and the thickness of this

layer diverges as the bulk phase transition is approached.

How does this phenomenon generalize to the two-wall

situation, where the surface layer is precluded from

divergence by the finite thickness of the sample?

The answer to this question depends on the thickness

of the sample. Recall. from equation (8), that the phase

transition occurs at a higher temperature than in the

bulk. The shift in phase transition temperature is

TNI,D21. Now, for short-ranged surface forces, the

thickness of the nematic layer at the wall is given by [5]

H,ln |TNI|. For a sufficiently thick sample, T will be

small, D&H, and the phase transition will occur before

the nematic layer has had a chance to grow thick.

Indeed, at each wall the maximum thickness of the

nematic layer, before the bulk transition takes place,

will be H,ln D. This is the phenomenon of capillary

condensation. On the other hand for a thin sample, the

Kelvin equation (8) suggests a phase transition at a

temperature at which the nematic layer thickness at the

walls is already larger than the sample thickness. Then

we expect no sharp transition. Somewhere in between

there will be a critical point. We expect our model

calculations to conform to these general observations,

and we shall be interested in features of the transition

under these circumstances.

3. Model

We consider a nematic sample between two parallel walls

placed at z50 and z5D respectively, and unbounded in

the xy plane. The nematic is assumed to be subject to

homeotropic boundary conditions (i.e. with its director

perpendicular to the walls), although our results may be

partly applicable to the case when the nematic is subject

to identical homogeneous boundary conditions at each

wall (i.e. each plane has an identical easy axis in the xy

plane), in which case the system is dominated by the

behaviour of the order parameter along this direction.

This restriction enables us to assume that the nematic

director is uniform throughout the sample. We also

ignore nematic density variations in the sample. Thus the

only variable depending on z is the nematic order

parameter Q(z)5Qzz(z). Following Sheng [3] we take

the free energy density in the Landau–de Gennes form

FzL
dQ

dz

� �2

~F0z
3

4
AQ2{

1

4
BQ3z

9

16
CQ4

{
1

2
xaH2QzL

dQ

dz

� �2

,

ð18Þ

where A5A9(T–T*), B and C are temperature-indepen-

dent parameters, xa.0 is the anisotropic part of the

magnetic susceptibility, and H is a uniform magnetic field

along the z axis. It is convenient to deal in dimensionless

quantities, and in order to do this we introduce a

dimensionless order parameter g5(C/B)Q, and divide F

by B4/C3, to obtain [17]

F gð Þ~ F{F0ð Þ
�

B4
�

C3~
3

4
tg2{

1

4
g3z

9

16
g4{hg, ð19Þ

where F, t5AC/B2 and h~ 1
2

xaH2C2
�

B3
w0 are the

dimensionless free energy density, temperature and

ordering field respectively. The bulk phase diagram

resulting from this free energy has been much studied [17,

18]; however it is useful to recapitulate its basic features.

At temperatures twtc~
1

18
there is just one phase. At

temperatures lower than this there are two phases: a low

field paranematic phase (at zero field this becomes the

isotropic phase) and a high field nematic phase. The

coexistence line terminates at a critical point at

tc, hc~
1

324
, gc~

1
4
. It is linear in the (t, h) plane:

h{hc~ t{tcð Þ=6, ð20Þ

and

gp{gc~{2 hc{hð Þ1=2
, ð21Þ

gN{gc~2 hc{hð Þ1=2: ð22Þ

Thus at zero magnetic field we have the usual isotropic–

nematic transition at tNI~
1

27
, gP50, gN~ 2

9
Below tNI

only the nematic phase exists.

The total dimensionless free energy functional per

unit area has the form

w gð Þ~j{1

ðD

0

F gð Þzj2 dg

dz

� �2
" #

dz

z

ðD

0

Vs gð Þ d zð Þzd z{Dð Þ½ �dz,

ð23Þ
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where j5(LC/B)1/2 is the nematic correlation length,

and the second integral gives the surface contribution to

the free energy. We assume, as in our previous work [1,

2], the surface potential due to the walls is a contact

potential, of zero range, and that it consists of two

terms

Vs gð Þ~{h1gz
1

2
gg2: ð24Þ

The first term is responsible for surface-induced order

(h1.0), and the second term for surface-induced

disorder (g.0). From a microscopic point of view, the

second term is a result of the fact that molecules close to

an interface have fewer nearest neighbours than in the

bulk. Sheng [1] considered only the first term, although

other workers have studied surface-induced disorder

[10, 11, 19]. To understand the full range of possible

behaviours it is necessary to consider both terms. The

equilibrium profile g(z) results from the minimization of

w{g(z)}. This yields the Euler–Lagrange equation

2j2 d2g

dz2

 !
~F 0 gð Þ, ð25Þ

together with boundary conditions

2j
dg

dz

� �
z~0

~V 0s gð Þ
��
z~0

, ð26aÞ

2j
dg

dz

� �
z~D

~{V 0s gð Þ
��
z~D

: ð26bÞ

Although this model is very simple, it contains an

extremely rich set of behaviours,and the procedure

required to solve the model is rather detailed. We

discuss the method of solution and the results in the

following sections.

4. Solution of model: general considerations

In this section we give a general outline of the procedure

required to solve the model introduced in the last

section, and make contact between properties of the

model and the thermodynamics discussed in § 2.

We start with the basic equations of the model,

equations (25) and (26). A crucial physical point to note

is that the system is symmetric about z5D/2, from

which it follows that (dg/dz)D/250. Thus integration of

equation (25) yields

j2 dg

dz

� �2

~F gð Þ{F gmð Þ, ð27Þ

where gm5g(z5D/2) is the order parameter at the

middle of the sample. The quantities gm and F(gm) have

considerable importance in the theory.

Equations (27) and (23) can be combined to yield an

explicit expression for the free energy per unit area

w~2sz
D

j

� �
F gmð Þ, ð28Þ

where

s~+2

ðgm

g0

H F gð Þ{F gmð Þ½ �dgzVs g0ð Þ; ð29Þ

here the signs +, – correspond. respectively, to a profile

increasing or decreasing at z50, and g05g(z50). Now

we can treat w as a function of g0 and gm, which should

be minimized with respect to these variables. The

minimization with respect to g0 gives

+2H F g0ð Þ{F gmð Þ½ �~V 0s g0ð Þ, ð30Þ

which is consistent with the result we would obtain by

combining equations (27) and (26). The minimization

with respect to gm leads to a relation between g0, gm,

and D, namely

D=j~+2

ðgm

g0

dg

H F gð Þ{F gmð Þ½ �
: ð31Þ

If DR? then gm tends to the bulk order parameter of

the infinite system gb and we recover the semi-infinite

sample problem with s being the wall–nematic or wall–

paranematic surface tension. For finite D, on the other

hand, the parameters g0 and gm are coupled and we

have to solve equations (30) and (31) to find them as a

function of D, t and h.

From a physical point of view D is the independent

variable, and we wish to solve for g0(D) and

gm(D). However, in the context of equations (30) and

(31) it is clear that if g0 and gm are chosen as the

independent variables then equation (31) provides an

explicit expression for D(g0, gm). The quantities g0

and gm are connected by equation (30), which can be

recast as

Fm g0ð Þ~F gmð Þ~F g0ð Þ{
1

4
V 0s g0ð Þ
� �2

: ð32Þ

In this equation it is clear that if gm is treated as the

independent variable, g0 is an ambiguous function of

gm. On the other hand if g0 is regarded as the

independent variable, then Fm(g0)5F(gm) is well

defined. The solution of this equation for gm(g0) is not

in fact unique; indeed there may be up to four solutions.

The physical solution, however, must obey two further

conditions, and this does impose uniqueness. We are

thus able to establish a functional relationship D(g0).
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The conditions are

gm{g0ð ÞV 0s g0ð Þ§0, ð33Þ

and

F gð Þ{F gmð Þ§0 for min g0, gmð Þ

ƒgƒmax g0, gmð Þ:
ð34Þ

Equation (33) follows directly from equations (26); (gm–

g0) has the same sign as (dg/dz)z50, and hence the same

sign as Vs9(g0). Equation (34) is merely the condition

that equation (27) is satisfied for all physical g, i.e. all

those g lying between g0 and gm.

Having shown that gm is a single-valued function of

g0, we proceed in the following way.

(i) We determine the physical regions of g0, using

the inequality

Fm~F g0ð Þ{
1

4
V 0s g0ð Þ
� �2

wmin F gð Þ: ð35Þ

(i) No solutions for gm exist if equation (30) is not

satisfied.

(ii) We calculate

D g0ð Þ~D g0, gm g0ð Þð Þ ð36Þ

using equation (31).

(iii) We seek solutions to the equation

D~D g0ð Þ: ð37Þ

(iv) We isolate the stable solutions of equation (37).

The stability conditions are most conveniently

written as

F 0m g0ð Þ
�

V 0s g0ð Þv0, ð38Þ

D0 g0ð Þ
�

F 0m g0ð Þv0: ð39Þ

(iv) We postpone the derivation of these inequalities

to Appendix 1.

(v) Finally we find the equilibrium values of g0 and

gm, corresponding to the absolute minimum of

w(g0, gm).

4.1. Thermodynamic properties of the model

At this stage it will be useful, even before we solve the

model by carrying out the set of procedures just

outlined, to make contact between the quantities

occurring in the model and the general thermodynamic

considerations described in § 2.

The relevant normalized surface free energy in our

model system can be rewritten from equation (28) as

w~2sz D=jð ÞF gbð Þz D=jð Þ F gmð Þ{F gbð Þð Þ: ð40Þ

We can compare this to the thermody namic expression

for the grand thermodynamic potential, V, obtained by

combining equations (9) and (11) to give

V~2~c{Dp{DpD: ð41Þ

We identify F(gb) with 2p, the free energy per unit

area of a system of thickness D immersed in the bulk

system. The disjoining pressure pD can now be identified

with 2(F(gm)–F(gb)), and the surface free energy s can

be identified with the thermo-dynamic quantity ~c. We

also note that pD is the force per unit area required to

hold the plates at a distance D apart. The work required

to expand the system from a thickness D to a thickness

D+dD is

dW~pD dD

~{
LV
LD

� �
p

dD:
ð42Þ

Mechanical stability demands that [15]

pD dDzdDð ÞvpD Dð Þ, ð43Þ

or equivalently

dpD

dD
v0: ð44Þ

This is a condition on the physical accessibility of the

system of thickness D, which is produced by supplying

physically the force pD. At a given pD the system will

slip through a region where (dpD/dD),0.

5. Asymptotic behaviour

In this section, before investigating in detail the function

D(g0), we find it useful to extract as much information

as possible about the large D behaviour of the finite

thickness system by carrying out an analysis of its

asymptotic behaviour in this regime. We shall first

discuss the behaviour, at fixed t, of the quantities gm(D)

and g0(D). This analysis gives some further insight into

the Kelvin equation for the temperature shift of the

phase transition, discussed in § 2. We then discuss some

aspects of the ordering phase transition at finite D.

At large D we may suppose that gm is close to

gb5gm(D5?), and that g0 is also only slightly

perturbed. D, g0 and gm are related through equa-

tion (31). The principal contribution to this integral

comes in the region of g close to gm. In this regime F(g)
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can be expanded in the following way.

F gð Þ{F gmð Þ% 1

2

L2F

Lg2

 !
gb

g{gbð Þ{ gm{gbð Þ2
h i

: ð45Þ

Substituting equation (45) into equation (31) yields the

asymptotic expression

gb{gm*+exp {
1

2

1

2
F 00 gbð Þ

� �1=2

D=j

( )
: ð46Þ

For h50 and t5tNI, gb50 or gb~gN~ 2
9

and

1
2

F 00 gbð Þ
� �1=2

~ 1
6
. We may show in a straightforward

way, using equations (29) and (32), that g0(D) and s(D)

also differ from their values at D5? by terms which are

exponentially small as a function of D.

The thermody namic argument of § 2 derives the

Kelvin equation (7) for the shift in the transition

temperature by balancing bulk and surface free energy

terms. In the context of the present model this can be

derived from the free energy expression of equation (40),

w~2s D~?ð ÞzD=jF gbð Þz2 s Dð Þ{s ?ð Þ½ �

zD=j F gmð Þ{F gbð Þ½ �:
ð47Þ

The asymptotic behaviour of DtNI as a function of D

results from the first two terms in this expression; the

last two terms are exponentially small and can be

neglected. Thus in the asymptotic regime the normal-

ized shift in the phase transition temperature DtNP is

given by

DtNP~2tNP sP ?ð Þ{sN ?ð Þ½ �j=Dl, ð48Þ

where sP, sN are the paranematic–wall and nematic–

wall surface free energies respectively, l5tNP(SP–SN) is

the (normalized) latent heat at the phase transition, and

s~{
LF

Lt
ð49Þ

is the bulk entropy density, with the subscripts p and N

applying to the paranematic and nematic phases

respectively. Expression (48) is expected to be exact in

the limit DR?, but, as we shall see, this approximation

can also be rather good for quite small D so long as the

wall potential is not too strong. These observations

have been made before in discussing phase transitions in

finite systems [10, 11]; Evans et al. [12] drew attention to

their connection with the thermodynamic results.

We have already emphasised in § 2 the dependence of

tNP on the nematic–wall contact angle h, and the

particular significance of the cases h50 and h5p when

complete wetting by the nematic and paranematic phases

occurs, respectively. We recall that in the one-wall case

for h50 there can, under some circumstances, be a

boundary layer transition at which g0 (but not gb)

jumps. For finite D this transition persists, although

now the large jump in g0 is accompanied by an

exponentially small jump in gm with a functional form

given by equation (46). Sheng [3] found that this line of

boundary layer transitions is parallel to the D axis,

essentially because of the exponentially small correc-

tions to g0 and gm<gb. For smaller D the boundary

layer transition temperature would no longer be

independent of D, but apparently the transition

disappears at rather large thicknesses (D/j<100) where

the asymptotic relations still hold.

For paranematic wetting (h5p) the situation is

analogous, although DtNP,0. However, in the case of

zero bulk magnetic field (h50) the conditions for complete

wetting by the isotropic phase are rather restrictive; in

particular h150. The nature of the wetting phase

diagram now prohibits a boundary layer transition [1].

The distinguishing feature of complete wetting in the

semi-infinite system is that the surface structure shows

no discontinuity at the phase transition. In particular, in

the context of the present model, even though gb jumps

discontinuously at the phase transition, g0 only under-

goes a continuous transition at tNI. This is no longer the

case for a sample of finite thickness. A question of some

theoretical interest is the functional form and magni-

tude of the jump g0(D) at the transition temperature

tNP(D). To investigate this we first note that

F gm Dð Þ, tNP Dð Þð Þ%F gb, tNIð Þ{sbDtNP, ð50Þ

F g0 Dð Þ, tNP Dð Þð Þ%F g0, tNIð Þ{s0DtNP, ð51Þ

where sb(gb) is the bulk entropy density, gb corresponds

to either the nematic or isotropic phases, and

s0~{ LF
Lt

��
g0,tNI

Terms exponentially small in D have

been neglected; they are small compared to DtNP,D21.

We now combine equation (50) and (51) with the

relation (32) to obtain

Fm gz
0 , tNI

	 

{Fm g{

0 , tNI

	 

~

sz
0 {s{

0

	 

z sN{sIð Þ

� �
DtNP,*D{1

ð52Þ

where

g+
0 ~g0 t+NP Dð Þ

	 

:

In general we expect gz
0 &g{

0 &g0 D~?ð Þ; then from

equation (32)

Fm gz
0

	 

{Fm g{

0

	 

&

LFm

Lg0

� �
g0

Dg0, ð53Þ

where Dg0~gz
0 {g{

0 and hence combining
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equations (52) and (53)

Dg0*D{1: ð54Þ

This behaviour applies if the nematic phase wets the

wall. However, if the isotropic phase wets the wall this

reasoning does not apply. Now g0(D5?)50, and as we

have observed previously this only obtains when

Vs g0ð Þ~
1

2
gg2

0: ð55Þ

We must still have gz
0 ~0, although g{

0 =0. In this case,

using equation (32),

LFm

Lg0

~
LF

Lg0

{
1

2
V 0s g0ð ÞV 00s g0ð Þ: ð56Þ

Now g050 is itself a local solution of the bulk

statistical mechanics, so F/050, and hence by combining

equations (55) and (56), we have Fm/050. Thus in this

case

Fm gz
0

	 

{Fm g{

0

	 

^

1

2

L2Fm

Lg2
0

Dg2
0, ð57Þ

and combining equations (52) and (57) yields the

asymptotic behaviour

Dg0*D{1=2: ð58Þ

Finally in this section we discuss the behaviour of the

average order parameter

~g~
1

D

ðD

0

g zð Þdz~+
2

D

ðgm

g0

g{gm½ �dg

H F gð Þ{F gmð Þ½ �
zgm ð59Þ

close to the paranematic–nematic phase transition. This

quantity is experimentally accessible in, for example, a

birefringence experiment. Whereas in the bulk system gb

jumps from zero to gN at tNI (for h50), in general in the

finite D case ḡ shows some pretransitional behaviour,

and is non-zero (although relatively small) even above

tNI The only exception to this is the case when the

surface field h1 is identically zero; as we have discussed,

then and only then g05gm5ḡ50 everywhere above tNI.

We shall, for definiteness, study the behaviour of

g tzNP Dð Þ
	 


, the value of the average order parameter in

the paranematic (‘isotropic’) phase just above the phase

transition. We must deal with the two cases, complete

wetting by the nematic phase, and partial wetting,

separately. In both cases, however, because the correc-

tions to g0 and gm are exponentially small, the leading

behaviour for large D is given by

g%
2C

D
, ð60Þ

where

C~

ð?
0

g zð Þ{gbð Þdz

is the adsorption on a single wall in the semi-infinite

system.

As discussed in § 2, for complete wetting,

C tð Þ*ln t{tNIð Þ, ð61Þ

from which C tzNP Dð Þ
	 


*lnDtNP*lnD, and hence

g tzNP Dð Þ
	 


*lnD=D: ð62Þ

On the other hand for partial wetting c remains finite at

tNI, and is an analytic function of t in this region. Thus

C tNPð Þ&C tNIð ÞzDtNP
LC

Lt

� �
tNI

z � � � , ð63Þ

and substituting from equation (63) into equation (60)

we obtain

g tzNP Dð Þ
	 


*
1

D
z0

1

D

� �2

: ð64Þ

There are analogous effects below the phase transition;

the relevant quantity to study is g t{NP Dð Þ
	 


{gN tNIð Þ.
However these effects are much more difficult to

measure.

6. The nematic–paranematic phase diagram

We first present the method for the calculation of the

nematic–paranematic phase diagram. for h50, and the

results of the calculations. The calculations themselves

are by no means trivial, and we postpone a more

complete description to Appendix 2, in which we also

give some general arguments about the shape of g(z)

under various circumstances.

In general, the strategy used to determine the phase

diagram is to plot D(g0) for a given temperature t. This

graph, in general, has a number of branches, one of

which is the thermodynamic branch. At the phase

boundary the free energy corresponding to two different

branches is the same. The phase boundary at D5? is

known. For very small D21 the phase boundary can be

plotted using the Kelvin equation (48). For higher D21,

the Clausius–Clapeyron relation (17) must be used. In

the context of the present model this equation becomes

dt

dD

� �
Dw~0

~{

LDw
LD

� �
t

LDw
Lt

� �
D

~
DFm

DDs
~{

2jDs

D2Ds
, ð65Þ

where
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Lw

Lt

� �
D

~
Lw

Lt

� �
Dzg0zgm

~{sD=j~{

ðD

0

s zð Þ dz

j
, ð66Þ

and s(z) is the local entropy density. Using D21 as the

independent variable we obtain

dtNP

dD{1
~2j

sP{sNð Þ
sP{sNð Þ : ð67Þ

The average entropy s̄ can be expressed in terms of g0,

gm and D as

s~s gmð Þ{ 3

2

j

D

� � ðgm

g0

g2{g2
m

F gð Þ{F gmð Þ dg

�����
�����: ð68Þ

Inprinciple the relation (67) is exact. In practice this

relation is used to provide a guess for tNP(D), and

knowledge of the functions D(g0) and w(D, g0) is then

used to improve this guess.

We show in figure 1 the phase diagram in (t, D21)

space for a number of different values of h1 and g.

Certain generic features of the phase diagram (the shift

in coexistence curve and the existence of a critical point)

are universal. Only when the wall is completely

disordering (h150), do we not find the existence of a

critical point. Depending on the value of the contact

angle cos h, the phase transition temperature tNP(D)

increases or decreases as a function of D21. The other

dramatic feature which accompanies the shift in tNI is a

change in the behaviour of the mean order parameter

ḡ(t). We show in figure 2 schematic representations of

the behaviour of ḡ(t) as D21 is increased, for a number of

different cases. In figure 2 (a) we show the behaviour

of ḡ(T) for different D for strongly ordering walls.

Roughly speaking this corresponds to the phase diagram

of figure 1 (a) or (b). In figure 2 (b) we show the beha-

viour of ḡ(T) for weakly ordering walls, for which

Figure 1. Phase boundaries in the (D21, t) plane. (a)
h150.02, g50; (b) h150.01, g50; (c) h150.01, g50.15; (d)
h150.02, g50.4.

Figure 2. Schematic plots of the mean order parameter ḡ
against temperature t. (a) cos h.0; (b) cos h,0; (c) g50; purely
disordering boundary. Curves 1 (——), 2(— —), 3(—?—?) and
4(- - - - -) are in order of decreasing thickness. Curve 1 is
D5?. (d) includes the boundary transition.
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cos h,0. This corresponds to the phase diagram 1 (c) or

(d). In figure 2 (c) we show ḡ(T) for disordering walls. In

the first two cases there is a small amount of ordering

above tNI. In the last case there is no critical point.

In figure 1 the dependence tNI(D) is described by the
Kelvin approximation DtNI,D21 in the asymptotic

regime D21R0. For small values of h1 and g this

approximation is good in practice up to the critical

point. We find that the Kelvin equation can only be

satisfied for smaller separations if partial wetting

conditions obtain. Figure 1 (a) with h150.02, g50

appears to give linear D21 dependence for tNI.

However, its slope for larger D21 differs from that
predicted by the Kelvin equation. This phenomenon is

connected to the boundary phase transition, which

occurs (g50) for 0.014,h1,0.024. For smaller values of

D the modified transition temperature is sufficiently

high that it pre-empts the boundary phase transition.

The behaviour of tNI(D) is still governed by the

asymptotic rule, but now the appropriate surface free

energy to take is the metastable low g0 value, rather
than the stable high g0 value. The low g0 value is

stabilized by the increase in tNI. It corresponds to a

higher value of sI than the stable value (which is just

sN+sNI), or equivalently, a value of cos h.1. Thus in

figure 1 (a) we have the apparently anomalous example

of a surface phenomenon governed by a value of

cos h5(sI–sN)/sNI.1.

At this point we remark on the strong analogy
between the nematic phase diagram in a bulk system in

a bulk magnetic field h, and the nematic phase diagram

in a confined system as a function of the inverse wall

spacing D21. This analogy was noticed by Sheng [3],

and is implicit in the use of the term paranematic for the

less ordered phase in both cases. However, unrealisti-

cally large bulk magnetic fields are required to observe

the bulk nematic–paranematic critical point. We there-
fore pose the question: is the analogy between these two

phenomena more than just a formal analogy, so that by

observing the finite geometry phenomena we may think

of ourselves as observing the bulk nematic–paranematic

phase diagram in another guise? We examine this

question further in the next subsection.

6.1. The critical point

We make the simplest approximation, which is to

suppress spatial variations of the order parameter, and
suppose that surface fields can be averaged over the

bulk. The liquid crystal is now treated as if it were in an

effective external uniform ordering field

heff gð Þ~2Vs gð Þ= D=jð Þ, ð69Þ

where ḡ is a (suitably defined) average order parameter,

and the free energy density is now given by equa-

tion (19)

F gð Þ~ 3

4
tg2{

1

4
g3z

9

16
g4zheff gð Þ,

~
3

4
tz

4

3
gj



D

� �
g2{

1

4
g3z

9

16
g4{2h1 j=Dð Þg:

ð70Þ

The net effect is not only to introduce an effective

ordering field but also to shift the temperature scale

downwards. The reduced number of surface nearest

neighbours means that the temperature required for the

onset of nematic behaviour is lowered.

The critical parameters can now be found by

comparing the parameters in the free energy of

equation (70) to those in equation (19). We obtain for

the critical thickness,

2h1 j=Dcrð Þ~hc, ð71Þ

and hence

Dcr=j~:2h1=hc; ð72Þ

for the critical temperature

tcrz
4

3
gj=Dcr~tc, ð73Þ

whence, combining equations (72) and (73) we obtain

tcr~tc{
2

3
g hc=h1ð Þ: ð74Þ

In figures 3, 4 and 5 we compare the predictions of

equation (72) and (74) with those of the full non-

uniform theory. In figure 3 a plot of Dcr against h1 is

shown for a number of different values of g/h1. The

predictions of equation (72) are remarkably well satis-

fied, especially for low h1. Discrepancies occur for

higher h1, in particular for large values of g/h1.

Equation (74) predicts that tcr5tcr(g/h1), and for

h1 *; 0:02 this is very well satisfied. Equation (74) also

predicts that if h150, tcrR2?, or equivalently that no

critical point exists, and this also is consistent with the

predictions of the full theory. On the other hand if g50,

equation (74) predicts that tcr should be independent of

h1. In figure 4 we compare this approximation to the

full theory. For low h1 this is well-satisfied, although we

find numerically a slight decrease in tcr. Above h1,0.02

there is a more marked decrease in tcr, which then

stabilizes at a lower value of tcr around h1,0.03 [20]. In

figure 5 we check the prediction of equation (72) for the

functional dependence of Dcr on h1, for the case g50.

Once again we notice that the prediction is well satisfied

for h1 *; 0:02, but there are significant deviations for

higher h1.
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We now make some brief comments on these results.

The simple theory approximates the full theory well,

from the point of view of predicting the critical

parameters, for h1,0.02. By comparison we remark

that complete wetting by the nematic phase occurs at

h150.014, and the last vestige of non-wetting behaviour,

the surface critical point, occurs at h150.024. It seems

likely, therefore, that the approximate theory loses its

validity at the onset of complete wetting. Why this

should be is not clear. We speculate that this might be

because the finite thickness system has two nematic–

isotropic interfaces which in some sense screen the effect

of the surface field from the centre of the sample, thus

lowering the critical temperature. We observe that at

very high fields the critical temperature seems to

stabilize, but at a lower temperature from that predicted

by the simple theory. We do not understand this

phenomenon, although it seems likely that there is a

simple qualitative explanation. This is, however, pre-

cisely the regime in which the Kelvin equation also

needs corrections as a result of the growth of nematic

layers close to the wall.

6.2. Comparison with experiment

Yokoyama et al. [7] carried out experiments on liquid

crystal 4-n-pentyl-49-cyanobiphenyl (5CB) between SiO

and PVA substrates. Essentially the experiment mea-

sures ḡ(T). A quantitative comparison between experi-

ment and theory is rather difficult at this stage mainly

because the experimental data do not provide a precise

determination of the critical thickness and temperature.

Nevertheless we have been able to estimate values for

the surface parameters h1 and g using the approximate

formulae (72) and (74). If for the SiO surfaces we

estimate Dcr<1100 Å and Tcr–TNI520.1 K, then we

find h150.129 and g51.38. In physical units this leads

to h1,0.5361023 J m22 and g50.5761022 J m22. For

the PVA surfaces if we estimate Dcr%1600 Å and Tcr–

TNI50.03 K, this leads to h150.187 and g51.6, corre-

sponding to physical values of h1,0.7761023 J m22

and g,0.6661022 J m22. In both cases we have used

for A, B, C and L values given by Sheng [21], and the

matching between model and physical parameters is as

Figure 3. Comparison of the predictions for Dcr as a function
of h1 using the full non-uniform theory and a simple averaged
field approximation. Line (a) corresponds to g50; line (c), g/
h155; line (d), g/h1510; line (e), g/h1530. Line (b) is the
prediction of the averaged field approximation.

Figure 4. Prediction for tcr as a function of h1 for g50. The
dotted line t5tc is the average field prediction.

Figure 5. Prediction for Dcr as a function of h1 for g50 in the
large h1 regime.
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described in equation (18) and (19). We notice, however,

that the energy scale seems rather large compared to the

nematic–isotropic surface tension in 5CB of

,261025 J m22; further work would appear to be

fruitful.

7. Structural forces in nematic films

We now turn to the structural force between the two

walls, which as shown in § 4, is given by

pD~{ F gmð Þ{F gbð Þ½ �: ð75Þ

The condition (44) shows that pD is an increasing

function of D, and is zero at D5?. Hence in this model

pD is always negative, or equivalently the plates attract

each other.

We can also analyse the asymptotic behaviour in the

large D limit. Because F9(gb)50,

F gmð Þ{F gbð Þ* gm{gbð Þ2, ð76Þ

and from equation (46), we expect

pD*exp {
1

2
F 00 gbð Þ

� �1=2

D=j

( )
: ð77Þ

This exponential behaviour is a characteristic of the

contact short-range potential assumed for the surface

forces. Power law surface forces would give rise to a

power law dependence of pD upon D [22].

The nematic–paranematic transition can be thought

of as taking place at constant tNI by allowing D to vary.

The disjoining pressure goes through a discontinuity at

the transition. If Dt5tNP(D)–tNI.0 the high D phase is

paranematic, but if Dt,0 the high D phase is nematic.

In both cases, however,

pD D{ð ÞvpD Dzð Þ ð78Þ

and pD(D) remains an increasing function of D. The

attractive disjoining forces violate the mechanical
stability condition (44); they could not be observed in

a simple experimental context [15].

The discontinuity DpD5pD(D+)–pD(D2) along the

coexistence line in (D21, t) space presents an interesting

feature. In the asymptotic regime

DpD*DF gm, tNP Dð Þð Þ, ð79Þ

and hence from equation (50)

DpD* sI{sNð ÞDtNP*D{1: ð80Þ

Thus initially DpD increases as D21 increases. However,

as D is further reduced the discontinuity goes through a

maximum and decreases, finally disappearing at the

critical point.

In figure 6 we present a typical plot of pD against D,

at constant t. We have chosen h150.01 and g50.15, the

phase diagram of which is given in figure 1 (c); for these

parameters tcr50.0247 and Dcr/f<6. The plot is at

t50.02,tcr. The significant features are the high D

exponential behaviour, the rapid rise in pD close to Dcr,

and the lower dpD/dD for smaller D. The large dpD/dD

in the region of Dcr is a critical effect indicating the

closeness of the critical point; at the critical point this

quantity diverges.

We would like to make contact with the experiment

carried out by Horn et al. [15]. They measured the force

between mica surfaces separated by the nematic liquid

crystal 5CB in both planar and homeotropic orienta-

tions at room temperature. They found repulsive

medium range structural forces and speculated that

the modification of the order parameter near the

surfaces was responsible for these forces. The repulsive

structural forces cannot therefore be explained by the

present model, confirming a prediction by Marčelja and

Radić [23] who made an incomplete calculation using a

simpler version of our model. In fact the experiment of

Horn et al. was slightly more complicated than two

parallel plates; in their experiment a drop of liquid

crystal was placed between two cylindrical surfaces

whose symmetry axes were parallel. However, this

cannot change the qualitative picture. The attractive

nature of the structural forces should be independent of

the detailed form of Vs(g), so long as it is assumed to be

a contact potential. If Vs(g) had non-zero range this

might make a difference. Repulsive structural forces

have been predicted at short range [24], but these are

Figure 6. Disjoining force in the case g50.15, h50.01 at
t50.2 just below tcr50.0247.
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due to intermolecular correlations, and the range is

much shorter than the experimental range. Evans et al.

[12] studied the statistical mechanics of thin liquid films

using a non-local density functional approach. In this

system it is the density rather than the orientational

order which changes, but otherwise there are strong

analogies with the system we study.

However, if the primary ordering force at the surfaces

is dipolar, and only indirectly nematic through the

coupling between polar and nematic order parameters,

then repulsion between the walls is possible, as we now

show. We write the free energy per unit volume as a

function of a polar order parameter p, and ignore its

dependence on the nematic order parameter g:

F pð Þzf2 dp

dz

� �2

~Fz
1

2
ap2z � � �zf2 dp

dz

� �2

, ð81Þ

where F is in general an even function of p, a.0 implies

that there is no spontaneous dipolar order, and for

simplicity we take F(p) to have the simple form as in

equation (81). We have introduced a dipolar correlation

length f. The polar order parameter p is in general a

vector, but if the walls force p to be in the z direction, we

take p5pz to be a scalar. We shall not specify a

particular form of the surface field Vs(p), other than to

observe that if the walls are identical,

ps~p 0ð Þ~{p Dð Þ, ð82Þ

and p(z) is antisymmetric about z5D/2, by contrast with

g(z) which is symmetric, and consequently p(D/2)50.

The Euler–Lagrange equations for p and the crucial

thermodynamic quantities can be written down by

analogy with equations (27), (28), (40), (41), the

equivalent equations for g; we find

f2 dp

dz

� �2

~F pð Þ{F 0ð ÞzK2
m~F pð Þ{Fm, ð83Þ

where

Km~f
dp

dz

� �
z~D=2

, ð84Þ

w~2sz D=fð ÞFm, ð85Þ

and the disjoining force is given by

pd~{ Fm{Fbð Þ, ð86Þ

where the bulk free energy density Fb is

Fb~F 0ð Þ: ð87Þ

Combining equations (83), (86) and (87) we obtain

immediately

pD~K2
mw0, ð88Þ

or equivalently a repulsive long-range force between the

plates. The large D behaviour of the disjoining force can

be obtained from the analogue of equation (31),

D

f
%
ðps

0

dp

H 1
2

ap2zK2
m

	 
, ð89Þ

from which, combining equations (88) and (89),

pD*exp {
1

2

1

2
a

� �1=2

D=f

" #
: ð90Þ

In fact we expect both dipolar and nematic effects at

the interfaces, which give rise to competing attractive

and repulsive forces. A further complication might be

the long-range nature of the electrostatic forces which

interact with the dipoles. The crucial feature which

ensures the repulsive force, however, is the anti-

symmetry of the profile p(z) around the centre of the

slab. The experimentally observed repulsive disjoining

force is thus indirect evidence of the importance of

surface dipolar forces, giving rise to surface dipole

order. The dipolar forces do not need to be strictly

electrical dipole forces; there is no evidence to suggest

that mica is electrically active. However the molecules of

5CB do not have complete inversion symmetry along

their major axis, and this may give rise to surface forces

leading to dipolar surface order. We emphasize however

that surface nematic order alone leads to an attractive

disjoining force.

8. Conclusions

The primary aim of this study has been the investigation

of the statistical mechanics of a directionally uniform

nematic, in a thin slab between identical walls, in

particular close to the nematic–isotropic transition. We

have used a Landau–de Gennes mean field type theory

with surface interactions of zero range. The theory is a

one order parameter theory, and as such is applicable

close to any order–disorder transition in a thin slab

geometry. A secondary aim of this study has been to

make a general contribution to the theory of the effects

of finite size on first order phase transitions. We have

also endeavoured, as some previous workers have not,

to maintain contact between the results of the statistical

mechanical calculations and more general thermody-

namic considerations.

The theory predicts, almost universally, that in a

finite slab the first order nematic–isotropic transition is

shifted, and for sufficiently thin systems this first order
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line terminates at a critical point. For large thicknesses

the shift in transition temperature is inversely propor-

tional to thickness, as predicted by the thermodynamic

Kelvin approximation. For thinner systems the coex-

istence line is described by a Clausius–Clapeyron

relation. In fact in many cases the asymptotic, large

thickness result remains true even at lower thicknesses.

The only exception, within the theory, to the generic

phase diagram occurs when the walls are completely

disordering; then there is no critical point. So long as

this is not the case the high temperature isotropic phase

is properly called a paranematic phase, because of the

wall-induced order. This order can become quite

significant close to the transition, in particular when

the walls are wet by the nematic phase, and as the

critical point is approached.

For many cases of partial wetting (cos h?0 or p) the

walls are such as to slightly favour order when the bulk

phase is disordered, but to disfavour order when the

bulk is nematic. In the thick slab there will then be two

possible shape profiles, one with increased and the other

with decreased wall order. Although the nematic and

paranematic profiles become identical at the critical

point, in general the shape of the profile changes before

the critical point, and depends on whether Vs9(ḡ) is

greater than or less than zero.

The statistical mechanics of the finite thickness

system has a strong analogy with that of a nematic in

an ordering field. Indeed, our results show that in the

weak surface field regime the phase diagram of the finite

system would be well predicted by averaging the surface

fields over the whole system. The finite magnetic field

critical point has not hitherto been experimentally

accessible; the finite thickness effects are perhaps

more so.

We have also studied the structural force between two

walls. We find that surface nematic ordering gives rise

to attractive forces between walls, but that the

experimentally observed repulsion can only be under-

stood in terms of surface dipole ordering.

The calculations of the asymptotic behaviour of

various parameters in the large D limit should be

directly amenable to experiment. We draw particular

attention to behaviour of the discontinuity in the

surface order parameter (Dg0 in § 5) when the wall is

such that one phase (either N or I) completely wets it.

We find that in the large D limit, this discontinuity is

normally inversely proportional to thickness (recalling

that in a semi-infinite system it would be continuous).

However the discontinuity is proportional to D21/2 if

the parameters at the wall are appropriate to a critical

wetting transition. This includes the particular case of a

wall wet by the isotropic phase. Such wetting is in a

sense less powerful, and unsurprisingly Dg0 is greater,

i.e. D21/2.D21. Finally, of course, if the wall is not

completely wet by either phase Dg0 remains finite at

D2150, which is larger still.

We next ask in what way the modelling of the

problem might be incomplete. The contact interactions

at the wall are an approximation which will give rise to

incorrect asymptotic behaviour of the disjoining pres-

sure at large thicknesses. If the surface interactions are

power-law like this could be serious; however liquid

crystal orienting interactions may be short-range. In any

event the experiments remain unexplained and further

experiments are clearly desirable. Similar qualifications

apply to the whole Landau–de Gennes formalism, but it

has proved useful in other contexts.

Perhaps a larger problem is concerned with the effect

of fluctuations. For the nematic–isotropic transition

fluctuations are important even for bulk three-dimen-

sional systems, in the sense that the Ginzburg criterion

[25] is not satisfied close to the transition. Presumably

this becomes even more important for a thin system

which is becoming in some sense two dimensional. This

may mean that the theory is unreliable from a

quantitative point of view, especially for thinner slabs.

However, presumably the qualitative picture remains

viable. We note, however, that in a system of cylindrical

or spherical pores, the fluctuations become sufficiently

powerful to broaden the singularities associated with a

first order phase transition. A mean field theory of the

type used in this paper would be unable to treat this

phenomenon. In the nematic case for such a geometry it

would also no longer be possible to ignore director

inhomogeneities.

Finally, we turn to directions for future research.

First of all there is a need for further experiments. The

experiments on the nematic–isotropic transition at finite

thickness by Yokoyama et al. [7], while strongly

suggestive, are by no means conclusive, and unambig-

uous observations of the finite thickness critical point

are clearly desirable. Similarly there is a need for further

experimental work on the disjoining pressure, especially

in view of the possible competition between attractive

and repulsive structural forces. On the theoretical side

we emphasise that the present theory is in fact the

simplest possible. More sophisticated attempts at

modelling should include explicitly the possibility of

density change close to walls and the full nematic

ordering tensor. Intriguing phenomena may also result

when the two walls are no longer identical, including the

possibility that the ordering temperature may no longer

be a monotonic function of thickness.
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Appendix 1

Derivation of the stability conditions

In this appendix we derive the stability conditions

equations (38) and (39) used in the derivation of the

equilibrium values of g0 and gm in § 4. We recall that

these quantities are solutions of the equations

wg0
~0, wgm

~0 where w(g0, gm) is described by equa-

tions (28) and (29). The stability equations, conditions

that a minimum in g has been found, are

wg0g0
w0, ðA1Þ

wg0g0
wgmgm

{w2
g0gm

w0: ðA2Þ

In fact the equation wgm
~0 yields an implicit relation

between g0, gm and D, and as a result equation (A 2) can

be rephrased as

d2w

dg2
m

w0, ðA3Þ

where w is now thought of as being a function of the one

variable gm.

From equation (28) we derive

wg0g0
~2sg0g0

: ðA4Þ

Now from equation (29)

sg0
~+2H F g0ð Þ{F gmð Þ½ �zV 0s g0ð Þ, A 5 að Þ

~0: A 5 bð Þ

Hence

sg0g0
~+

Fg0
g0ð Þ

H F g0ð Þ{F gmð Þ½ �
zV 00s g0ð Þ: ðA6Þ
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We now substitute from equation (A 5) into equation (A

6), yielding

sg0g0
~{

2Fg0
g0ð Þ

V 0s g0ð Þ
zV 00s g0ð Þ, A 7ð Þ

~{
2

V 0s g0ð Þ
Fg0

g0ð Þ{
1

2
V 0s g0ð ÞV 00s g0ð Þ

� �
, A 8ð Þ

~{
2

V 0s g0ð Þ
L

Lg0

F g0ð Þ{
1

4
V 0s g0ð Þ
	 
2

� �
, A 9ð Þ

and hence from equation (32)

wg0g0
~2sg0g0

~{
4F 0m g0ð Þ
V 0s g0ð Þ

: ðA10Þ

Hence from equations (A 1) and (A 10) we derive the

condition (38)

F 0m g0ð Þ
V 0s g0ð Þ

v0:

We shall derive equation (39) by starting with the

condition (A 3). From equation (28)

dw

dgm

~2
ds

dgm

z
D

j

dF gmð Þ
dgm

, A 11 að Þ

~0, A 11 bð Þ

where equation (A 11 b) is the stationary condition, but

can be thought of as the defining equation for a (locally

defined) function D(gm). Then

d2w

dg2
m

~2
d2s

dg2
m

z
D

j

d2F gmð Þ
dg2

m

: ðA12Þ

However, using equation (A 11 b)

2
d2s

dg2
m

~{
d

dgm

D gmð Þ dF gmð Þ
dgm

� �
, A 13ð Þ

~{
dD gmð Þ

dgm

dF gmð Þ
dgm

{D gmð Þ d
2F gmð Þ
dg2

m

, A 14ð Þ

and combining equations (A 12) and (A 14) we obtain

d2w

dg2
m

~
1

j
D{D gmð Þ½ � d

2F gmð Þ
dg2

m

{
1

j

dD

dgm

dF gmð Þ
dgm

, A 15ð Þ

~{
1

j

dD

dgm

dF gmð Þ
dgm

, A 16ð Þ

~{
1

j

dF gmð Þ
dgm

� �2
dD

dgm



dF gmð Þ

dgm

: A 17ð Þ

Now, recalling equation (32) Fm(g0)5F(gm), and chan-
ging the independent variable from gm to g0, we derive

d2w

dg2
m

~{
1

j

dF gmð Þ
dgm

� �2
D0 g0ð Þ
F 0m g0ð Þ

: ðA18Þ

Hence d2w
dg2

m
w0 implies the relation (39)

D0 g0ð Þ
F 0m g0ð Þ

v0:

Appendix 2

In this appendix we discuss in more detail the behaviour

of the graph of D(g0), derived from equations (31) and

(32) and used in order to derive the phase diagram

discussed in § 6. This will enable us to see more clearly

the origin of the critical point within the theory, and we

shall also see the connection between the graph of D(g0)
and the shape of the profile g(z).

We consider first the simplest case of g50; in this case

the wall always orders the liquid crystal, so g0.gm. We
also find cos h.0 in the semi-infinite system, and from

the Kelvin approximation tNP(D) increases as D

decreases in the asymptotic large D regime, a trend

which in fact continues for smaller D right up to the

critical point. In figure 7 D(g0) has been plotted for an

increasing sequence of temperatures, starting at tNI and

terminating at the nematic–paranematic critical tem-

perature tcr5tNP(Dcr).

The main features of these graphs can be understood

as follows. For pedagogical reasons we start with

figure 7 (b), in which D(g0) has three separate branches.

The low g0 solution corresponds to the thin film of low
adsorption regime, i.e. low g0 and low gm5gb in the

D5? limit; the intermediate g0 solution corresponds to

the semi-infinite case in which the surface is more or less

nematic, but the bulk is isotropic (the so-called thick or

wetting film solution, gm, is still small); the high g0

solution corresponds to the nematic liquid. In all cases

the physical solutions correspond to D(g0) being a

decreasing function of D9, this means that the smaller
the system, the more the order, as expected for h1.0.

The regions where D(g0) is an increasing function of g0

(the dotted lines) are unstable solutions. For h1 *; 0:12

the nematic phase does not wet the wall and in general,

the low g0 branch is more stable than the intermediate

branch. However for h1.0.12 we do get wetting and the

intermediate branch is more stable. As discussed in

equation (54) at the finite D transition to the nematic
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branch Dg0,D21,DtNP, indeed as t approaches tNI, the

wetting film solution for D5? approaches the nematic

solution; this corresponds to the intermediate branch of

D(g0) narrowing and squeezing towards the upper

nematic branch of D(g0), as can be seen in figure 7 (a)

where it has finally disappeared. On the other hand as t

is increased the wetting film branch becomes progres-

sively less stable and it disappears between figures 7 (b)

and (c) for D5?, as the unstable thin film D(g0) branch

hits the stable thick film branch. Thenceforth (fig-

ure 7 (c)) the thick film only leaves a ghost at finite D, in

the form of an intermediate maximum of D(g0).

Eventually the bulk nematic phase becomes unstable

at a temperature t�N (~ 1
24

in our model for h50), and

then only one branch of D(g0) remains (cf. figure 7 (d)).

Notice however that a nematic phase still exists for low

D, and the D5? solution has now become a maximum

in D(g0). Finally in figure 7 (e) at t5tcr, D(g0) becomes

monotonic with an inflexion point at g0~gcr
0 . The phase

transition between the low g0 and high g0 branches of

D(g0) disappears here, so this is the critical point.

The situation is slightly different for h1 *> 0:024, for

then there is no boundary transition and only one

possible value of g0 for D5?, implying the absence of

the left-hand branch in figures 7 (a) and (b). Figure 7 (b)

is thus directly followed by figure 7 (d). Otherwise the

picture is qualitatively the same. In all these cases the

low temperature solution is the nematic branch. If t is

increased at fixed D the solution jumps to another

branch at a phase transition temperature tNP(D).tNI.

For D(Dcr, on the other hand, this is no longer

possible and there is no phase transition.

We now examine what happens as we turn on
progressively a surface disordering effect. The crucial

quantity to monitor is g�0, defined by

V 0s g�0
	 


~{h1zg1g�0~0: ðB1Þ

The two points to bear in mind, from equations (26) and

(27), are that the sign of Vs9(g0) gives the sign of (dg/
dz)z50, and that (dg/dz) is monotonic for 0,z,D/z.

From this we conclude that if gmwg�0, then gmwg0wg�0,

and conversely if gmvg�0 then gmvg0vg�0. There are

now three cases, depending on the size of g�0. We list and

discuss them in order of increasing surface disorder, or

equivalently, decreasing g�0.

In case (i) g�0wgN tNIð Þ~ 2
9
. Then because gN(t) is a

decreasing function of t, the surface potential is ordering

both in the nematic phase and in the isotropic phase in

the region of tNI. The structure of D(g0) is now very

similar to that in figure 7, and tNP(D).tNI as in that

case also. There is one slight difference. Because g0.gm,

but also g0vg�0 in order to maintain the monotonicity of
g(z), as DR0, g0?g�0. Because of the similarity of this

case to the simple ordering case we do not show a

separate diagram for this.

In case (ii) g�0vgN tNIð Þ, but cos h.0. In this model

cos h50 corresponds to h15ggc5g/9 [1]. A metastable

bulk nematic continues above tNI with gN(t) decreasing
with t, until it reaches bulk instability at

t�N ~ 1
24

for h~0 in this model
	 


, by which point gN

has reached g�N; in this model F(g) has an inflexion

point at g�N~ 1
6
. The crucial region of interest is

above tNI, because tNP(D).tNI. We consider case (ii

(a)): gN tNIð Þwg�0wg�N, and case (ii (b)): g�Nwg�0wgc

Figure 7. Graphs of D(g0) as temperature is increased for g50. (a) t5tNI; (b) t1.tNI; (c) t2.t1; (d) t3.t2; (e) t5tcr.
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separately. In both cases, however, we observe that at

tNI, Vs9(0),0 in the isotropic phase and so as far as the

isotropic phase is concerned the surface orders, but

Vs9(gN(tNI)).0, and hence from the point of view of the

nematic phase the surface is disordering.

In figure 8 we show a number of plots of D(g0) for

increasing values of t in case (ii (a)). In figure 8 (a), close

to tNI, there are two branches of D(g0). The left-hand

branch is the isotropic branch. The physical part of this

branch has D decreasing with g0, corresponding to

increased order at the surfaces. The right-hand branch is

the nematic branch, but on this branch as g0 decreases,

so does D, corresponding to disordering surfaces. On

this branch as g0?g�{N , DR0. There is also an unstable

g0~g�0 (for all D) branch, as can be seen from

equations (26) and (27). The unstable part of the

isotropic branch also hits g0~g�0, and terminates there,

at a finite value of D, because the change of sign of (dg/

dz) at g0~g�0 destroys the solution. However as t

increases gN(t) decreases, eventually reaching g�0 in

figure 8 (b). The surface is now neutral with respect to

the nematic phase, and ordering with respect to the

isotropic phase. The right-hand branch of D(g0) is thus

squashed into the line g0~g�0. As t is further increased

the nematic branch has D increasing with decreasing g0,

consistent with gN tð Þvg�0 and ordering interfaces (cf.

figure 8 (c)). Note that D g�0
	 


remains zero. The

progression from figure 7 (c) to 8 (d) is analogous to

that from figure 7 (b) to (d) in the case of continuous

wetting: the bulk nematic is destabilized. Finally (not

shown) a critical point is reached, by analogy with

figure 7 (e).

Schematic order parameter profiles for the coexisting

phases within the slab for case (ii (a)) are shown in

figure 9. In figure 9 (a) the paranematic phase is more

ordered near the walls, but the nematic phase is less

ordered near the walls, corresponding to the respective

branches of D(g0) in figure 8 (a). In figure 9 (b) the

paranematic phase remains more ordered near the wall,

but the nematic profile is constant, corresponding to

D g�0
	 


in figure 8 (b). However in figure 9 (c) both

profiles are more ordered close to the wall, correspond-

ing to subsequent pictures in figure 8, and remaining

true at the critical point.

In figure 10 we present plots of D(g0) for case (ii (b)),

for temperatures increasing from tNI to tcr(D).

Figure 10 (a) represents the situation at (and just above)

tNI and is analogous to figure 8 (a). We remark that in

this figure the turning point of D(g0) takes place for

gmaxvg0vg�0, where gmax is the point at which F(g) has

Figure 8. Graphs of D(g0) for cos h.0, g?0; case (ii (a)) in the text. (a) t5tNi; (b) t~t�I wtNI; (c) t�I vtvt�N; (d) t�Nvtvtcr.
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a maximum. This can be seen from equation (32), which

shows that F(gm) and gm have turning points close

to but slightly above the maximum of F(g0), and

from equation (31) which gives D in terms of an integral

between gm and g0. Thus we expect a qualitative

change when gmax, which is an increasing function of

t, reaches g�0, at a temperature t* (cf. figure 10 (b)). At g�0
the governing equations are satisfied for arbitrary D,

and

Lt
g0?g�{

0

D g0ð Þ~ Lt
g0?g�z

0

D g0ð Þ:

As t is increased further, g�0 is now less than gmax, and so

there is a region of instability on the right-hand branch

of D(g0) (cf. figure 10 (c)), and a region of what

might still be called nematic stability (for small D) on

the left-hand branch of D(g0). Finally (cf. figure 10 (d))

the kink in the branch of D(g0) disappears at a critical

point.

The profiles g(z) corresponding to figure 10 are the

same as those in figure 8 corresponding to case (ii (a)).

Thus the profiles corresponding to figure 10 (a) are

shown in figure 9 (a); the exceptional case correspond-

ing to figure 10 (b) is shown in figure 9 (b), and

figure 9 (c) represents the profiles of figure 10 (c).

We now consider case (iii) for which cos h,0, and

0vg�0vgc. The surface disorder has now increased

sufficiently to depress the ordering transition in a finite

system. The relevant region to examine is now t,tNI.

Graphs of D(g0) are shown, now in order of decreasing

temperature, in figure 11. The features of this set of

graphs are analogous to those of figure 10. Close to

tNI (cf. figure 11 (a)) g�0vgmax; there is a left-hand

paranematic branch of D(g0) extending to D50 at g�0,

Figure 9. Coexisting profiles for the case described in figure 8. N is the nematic profile; P is the paranematic profile. (a) tvt�I ; (b)
t~t�I ; (c) twt�I . At t~tcrwt�I the two profiles become identical.

Figure 10. Graphs of D(g0), g?0, case (ii (b)) in the text. (a) t5tNI; (b) t5t*.tNI; (c) t5t1.t*; (d) t5tcr.t1.
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Figure 11. Graphs of D(g0), cos h,0. (a) t5tNI; (b) t5t*,tNI; (c) t5t1,t*; (d) t5tcr,t1.

Figure 12. Coexisting profiles for case described in figure 11. (a) tNI.t.t*; (b) t5t*; (c) t*.t.tcr.

Figure 13. Graphs of D(g0) for a disordering surface h150, (a) 0,t,tNI; (b) t,0.
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and a right-hand nematic branch of D(g0) which becomes

unstable close to g�0 and terminates at a finite value of D at

g�0. As t is decreased gmax decreases and reaches g�0 (cf.

figure 11 (b)), there is then an exchange of stability

between the two branches and part of the paranematic

branch lies to the right of g�0 (cf. figure 11 (c)). Finally the

kink in D(g0) disappears at a critical point (cf.
figure 11 (d)).

The coexisting profiles corresponding to these graphs

are shown in figure 12. In figure 12 (a), near tNI, as in

the previous cases there is a nematic phase slightly

disordered near the wall and a paranematic phase

ordered close to the wall, corresponding to figure 11 (a).

Figure 12 (b) corresponds to the situation in fig-

ure 11 (b); for sufficiently small D the paranematic
profiles have g zð Þ~g�0. Then the coexisting profiles in

figure 12 (c) are both less ordered near the wall; this is

consistent with both profiles corresponding to g0 on the

right hand branch of D(g0).

Finally we come to the case h150, when the surface is

purely disordering. Depending on the value of g the

isotropic phase wets one wall partially (-1,cos h,0)

or completely (cos h521). Complete wetting occurs

if gw
1
3
. Plots of D(g0) for 0,t,tNI and t,0 are shown

in figure 13 (a) and (b), respectively. For 0,t,tNI

there are two solutions: g05gm50 and a second
solution which is the stable branch of D(g0). For

complete wetting the right-hand asymptote approaches

g050 as t?t{NI. From figure 13 (a) it is clear that there

is no critical point for t.0. For t,0, D(g0) is finite

and D9(g0) is negative. There is thus no critical point

here either, except in the purely formal limit of tcr52?,

at which D(g050)509(g050)50. We remark that

below t50 the bulk isotropic phase is unstable.
However for a finite system with low enough D, the

g(z)50 phase can be stabilized, even though it

corresponds to a local maximum of F(g), because then

s50.
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